DOCUMENT RESUME

ED 252 413 SE 045 335

AUTHOR Nelsen, David

TITLE Oxidation Ditches. Instructor's Guide. Biological

Treatment Process Control.

INSTITUTION Linn-Benton Community Coll., Albany, Oreg.

SPONS AGENCY Environmental Protection Agency, Washington, D. C.

PUB DATE 8

GRANT EPA-T901238

NOTE 19p.; For related documents, see SE 045 333-354.

AVAILABLE FROM Linn-Benton Community College, 6500 S.W. Pacific

Blvd., Albany, OR 97321 (Instructor's Guide and

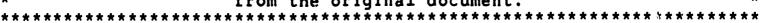
accompanying slides).

PUB TYPE Guides - Classroom Use - Guides (For Teachers) (052)

EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS *Biology; Laboratory Procedures; Microbiology;

*Oxidation; Post Secondary Education; *Sludge; *Training Methods; Waste Disposal; *Waste Water;

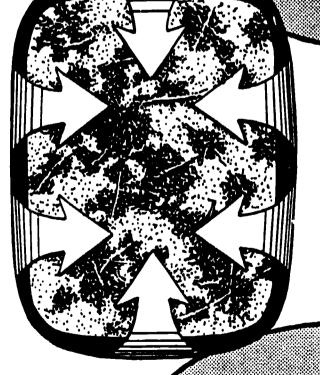
*Water Treatment


IDENTIFIERS *Oxidation Ditches; Unit Processes

ABSTRACT

This instructor's quide contains materials needed for teaching a two-lesson unit on oxidation ditches. These materials include: (1) an overview of the two lessons; (2) lesson plans; (3) lecture outlines; (4) student worksheet (with answers); and (5) two copies of a final quiz (with and without answers). The first lesson: reviews the theory, structure, and components of the oxidation ditch system; discusses nitrification/denitrification and its importance to oxidation ditch operation; and outlines and explains process monitoring and process control techniques. (This lesson is designed to } presented with the aid of a set of 35mm slides accompanying the The second lesson, which is more advanced, covers the topics of carbonaceous and nitrogenous oxidation and their importance in oxidation ditch process control. Since this lesson could be considered optional for instruction at the intermediate level, the student worksheet and final quiz cover only the material presented in the first lesson. (JN)

Reproductions supplied by EDRS are the best that can be made from the original document.


Biological Treatment Process Control

U.S. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION

- This document has their reproduced as received from the person or organization organization if
- Minor changes have been made to improve reproduction quality
- Peiots of view or opinions state: in this document do not necessarily represent official NIE position or policy

Oxidation Ditches

Instructor's Guide

"PERMISSION TO REPRODUCE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

John W. Carnegie

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Linn-Benton Community College Albany, Oregon 1984

ERIC Full Text Provided by ERIC

BIOLOGICAL TREATMENT PROCESS CONTROL

OXIDATION DITCHES

INSTRUCTOR'S GUIDE

Text Written By:
David Nelsen
Envirotech Operating Service
San Mateo, California

Edited By:
John W. Carnegie, Ph.D.
Project Director
Linn-Benton Community College
Albany, Oregon

Instructional Design:
Priscilla Hardin, Ph.D.
Priscilla Hardin Instructional Services
Corvallis, Oregon

Developed Under: EPA Grant #T901238 1984

Instructor's Guide

Table of Contents	<u>Page #</u>
Overview of Lessons	I-0X-1
Lesson Plans	I-0X-1
Lecture Outline	I-0X-3
Lesson I - Introduction, Theory & Components	I-0X-3
Lesson II - Process Kinetics & Process Control	I-0X-5
Answers to Worksheet Problems	I-0X-8
Final Quiz	I-0X-10
Answers to Final Quiz	I-0X-13
Copy of Student Materials	

Overview of Lessons

This unit on Oxidation Ditches is divided into two lessons. Lesson I reviews the theory, structure, and components of the oxidation ditch system. Nitrification/Denitrification is discussed and its importance to oxidation ditch operation explained. Process monitoring and process control techniques are outlined and discussed. Lesson I is designed to be presented with the aid of the 35 mm slides accompanying this unit.

Lesson II does not have slide support. This lesson, which is more advanced, covers the topics of carbonaceous and nitrogenous oxidation and their importance on oxidation ditch process control. This lesson could be considered optional for instruction at the intermediate level. Therefore, the worksheet and final quiz cover only the material presented in Lesson I.

Lesson Plans

Lesson I - Introduction, Theory & Components

- Have students read text material ahead of time, if possible.
- Lecture from outline with slide support (about 45 min).
- Assign worksheet (10 15 min).
- Correct and discuss worksheet (15 20 min).
- Assign final quiz (15 min).

Lesson II - Process Kinetics and Process Control (Optional)

- Assign text material
- Lecture using overhead or chalk board presentation depending on instructor preference.
- Conduct open discussion
- Design and assign worksheet to match needs and level of specific student group.

Additional Comments:

- A visit to an operating oxidation ditch plant would be desirable. If a visit is possible, have students measure dissolved oxygen around the ditch to emphasize the concept of aerated and anoxic zones.
- For classroom demonstrating provide fresh activated sludge from an oxidation ditch for the students to perform settling rate tests and to observe microorganisms under the microscope.
- Collect samples of raw, primary effluent, and final effluent in jars to compare characteristics.
- Have samples of trend charts for plotting of proces; control indicators.

b

LECTURE OUTLINE

Lesson I - Introduction, Theory & Components

Slide #3

History of the Oxidation Ditch Process

Names: Pasveer Oxidation Ditch Process

Loop Aeration

Carrousel Process

Orbital System

Developed in the Netherlands by I.A. Pasveer

First System in 1954

In 1975 there were 558 Oxidation Ditch

Plants in the U.S.

Slide #4

Principles of the Oxidation Ditch

Application of the Extended Aeration, Complete Mix Concept of Activated Sludge

A Closed-loop Trench Aeration Tank

Lost Cost Construction - Advantage

Disadvantages due to Aeration Effectiveness, Detention Time, Flow Pattern when Scaled

Up Significantly

Slide #5

Multiple-Trench Systems

Multiple Small Units

Carrousel System

Several Circular Tanks One Inside the Other; The Inner Most Tank is the Clarifier, the

Outer Tanks the Aeration Basins.

Partitions Channel the Flow

Designs of 5-20 MGD Applicable

Slide #6

Advantages - Estimated to be Cheapest System to

Build in the 0.1-4.0 MGD Range

Carrousel Design Make Almost Any Size System

Competitive

-Relatively Low Operation Costs

-Tolerates Shock Loads Because of High MLSS

and Long Detertion Time

-Requires Minimal Operational Guidance

-Nitrification/Denitrification can be Accomplished in Sara Basin

Disadvantages - Space Requirement Relatively Large because of Extended Aeration Mode

-Control of Aeration Difficult

The Oxidation Ditch System Components--

Slide #7

The Oxidation Ditch

Trenches Dug into Earth

Free Standing Concrete Basins

Oval or Circular

Slide #8

The Aeration Devices

Rotating Brushes Across the Channel

Whip Oxygen into the Water and Propel the

Water Around the Basin

Slide #9

Brush Type - Horizontal Shaft 70-80 rpm

Disc Type - Large, Vaned Discs on Horizontal Shaft, Partially Submerged; 30 rpm

Shart, rartially submerge

Clarifier

Separation of Solids

Separate Basins & S ϵ 'tling in Aeration Basins

Wasting & Return Slor e Capabilities

Solids Handling

The Aeration Process--

Slide #10

Aeration: 1-3 mg/1 D.O.

Anoxic Zone (0 m/1 D.O.)

Nitrification/Denitrification

Slide #11

Horizontal Movement

At Least | ft/sec

Baffle

Slide #12

Suspended Growth

Organisms and food Mixed and Moving Together

Loading and Operating Conditions--

Slide #13 Detention Time

SRT 15-30 Days

Aeration Time 24 Hours

Slide #14 Solids Concentration in Basin

MLSS 4000-6000 mg/1

Slide #15 Loading Condition

F/M = 0.25-0.35

<u>Lesson II - Process Control and Process Kinetics</u>

Slide #16 Process Control

Evaluating Sludge Settleability

Settleometer

SVI

Slide #17 Solids Inventory

DOB

Solids in Clarifiers

MLSS

Wasted Solids

Slide #18 Return Sludge Rate

RAS 40-45% of Influent Flow

Used to Balance Sludge Inventory

Segmented Wasting Schedule

Waste Sludge Rate (WAS)

Methods to Follow Process Should be Trend

Charted

FM

SRT

Dissolved Oxygen Control

Oxygen Profile

Base Operation on System Response

Process Should Dictate Guidelines

Slide #19

Process Kinetics

Oxidation of Organic Carbon Compounds

Oxidation of Organic Nitrogen Compounds

Sources of Nitrogen (NH₄ ± N)

Urine 0.5-3 g/day/adult

Feces 1-2 g/day/adult

Concerns with Nitrogen

Algae Blooms

Toxic Effects

Interference with Disinfection

Impact on pH

D.O. Demand

4.75 mg $0_2/\text{mg NH}_4 \pm \text{N}$

Nitrification/Denitrification

Balancing Oxidation and Reduction

Promote Nitrification and Allow Carbonaceous Oxidation to Follow

Nitrification

D.O. Residual of 1-3 mg/l

SRT 15-30 day

MLSS 4000-6000 mg/1

pH 6.5-8.0

10:1 alk/NH₄+

Temp

Denitrification

Facultative Organism Shift Quickly

Anoxic vs anaerobic

Alternating

Anoxic/Atrobic Zones

Slide #20

Slide #21

Daily Operational Activities--

Slide #22, #23, #24

Loading and Operating Ranges Required

D.O. 1-3 mg/1

Slide #25, 26

MLSS 4000-6000 mg/1

SRT 15-30 days

F/M 0.25-0.35

Slide #27

Housekeeping

Slide #28

Equipment Maintenance

Pumps and Motors

Clarifiers

Aerators

Lab

Slide #29

Safety

Slides #30-34

Review

Name		

Answers to Worksheet Problems

1. Calculate the volume of an oxidation ditch which has a cross-section as shown below and is 350 feet around in the center of the basin.

V = Area x Length
=
$$1/2(L_1 + L_2)$$
 x H x Length
= $1/2(20 + 16)$ x 5 x 350
= $31,500$ ft³ x 7.48 gal ft³

= 235,620 gal or 0.236 Mgal

2. Calculate the aeration time for an oxidation ditch which has a volume of 0.33 Mgal and an influent flow of 260 gpm.

D.T. =
$$\frac{\text{Vol}}{\text{Flow}}$$

= $\frac{0.33 \text{ Mgell} \times 1,000,000 \text{ gall}}{260 \text{ gall} \times \frac{60 \text{ min}}{\text{hr}} \times \text{Mgell}}$
= 21 hrs

3. If a float in an oxidation ditch travels 50 ft in 38 sec, what is the horizontal velocity in feet per second?

Vel =
$$\frac{\text{distance}}{\text{time}}$$
=
$$\frac{50 \text{ ft}}{38 \text{ sec}}$$
= 1.32 ft/sec

4. Calculate the F/M ratio for an oxidation ditch which has a volume of 1.0 Mgal with MLSS of 5000 mg/l loaded with a flow of 10 MGD and a BOD of 170 mg/l.

$$F/M = \frac{1bs BOD per day}{1bs MLSS}$$

$$= \frac{170 \text{ mg/1} \times 10 \text{ MGD} \times 8.34}{5000 \text{ mg/1} \times 1.0 \text{ Mgal} \times 8.34}$$

- = 0.34
- 5. If he influent flow is 3 MGD and the RAS flow is 875 gpm what is the percent return flow?

Percent return =
$$\frac{\text{Influent Q}}{\text{RAS Q}} \times 100\%$$

$$= \frac{875 \text{ gall}}{\text{min}} \times \frac{1440 \text{ min}}{\text{day}} \times \frac{\text{Mgall}}{1000000 \text{ gall}} \times 100\%$$

$$= \frac{3 \text{ Mgall}}{3 \text{ Mgall}}$$

= 42%

							Na	me		_				
Final	Quiz													
Multip	ole Choic		Choos the c						l plad	ce ar	ı "X"	in	front	of
1.	Which of an oxida				is n	not a	tern	n comm	only	used	i to	ider	ntify	
	a. Pas b. Loc c. Loc d. Car e. Orb	veer op Ae op La rrous oital	Oxid ratio goon el Pr Syst	ation n ocess em	Dito	:h								
	The oxid				ocess	was	deve	loped	l in					
	a. Eng b. Uni c. Hol d. Ger e. Der	land ited lland rmany nmark	State	S										
3.	The oxid	datio	n dit	ch pr	ocess	sis	a mod	difica	tion	of				
	a. the b. ext c. RBC d. ABF	tende C's	cklin ed aer	ation		ívate	ed slu	ıdge						
4.	The carr	rcus(el var	iatio	n is	most	t app	licabl	le to	the			f1	OW
	a. 0.5 b. 0-5 c. 5-2 d. 20- e. 50-	5-1 mgc 5 mgc 20 mg -50 m -100	ngd l Id ngd mgd											

5.	The oxidation ditch is designed to operate at mg/1 D.O.
	a. 0.1-0.5 mg/1 b. 1-1.5 mg/1 c. 0-2 mg/1 d. 1-3 mg/1 e. 5-10 mg/1
6.	Horizontal velocity of activated sludge around the ditch should be
	a. 0.5 ft/sec b. 1.0 ft/sec c. 2.0 ft/sec d. 5.0 ft/sec e. 10.0 ft/sec
7.	MLSS concentration in the aeration ditch should be
	a. 500-1000 mg/l b. 1000-1500 mg/l c. 2000-4000 mg/l d. 4000-6000 mg/l e. 8000-10,000 mg/l
8.	F/M ratios for aeration ditch loading are in the range.
	a. 0.01-0.2 b. 0.1-0.25 c. 0.25-0.35 d. 0.3-0.5 e. 0.5-1.0
9.	Which two tests are used to evaluate sludge settleability?
	a. volatile solidsb. MLSSc. settleometerd. centrifugee. SVI
10.	Wasting sludge from the system will have a long term effect on (choose 3 answers):
	a. DOB b. MLSS c. sludge age d. BOD e. solids inventory

11.	Algae blooms, D.O. demand, disinfection interference, impact on of and toxic conditions can all be a result of	
	excess nitrogen c. excess organic carbon c. excess D.O. d. inadequate oxidation e. stratification	
12.	The condition in which oxygen is relatively low is called	
	a. anaerobic b. anoxic c. aerobic d. nitrification e. stabilization	
13.	Which of the following conditions favor nitrification? (choose answers)	3
	a. D.O. 1-3 mg/l b. anoxic c. pH 6.5-8.0 d. MLSS 4000-6000 mg/l e. low ammonia concentrations	
14.	Daily operational activities should include (choose 4 answers):	
	 a. housekeeping b. safety consciousness c. equipment inspection d. laboratory testing e. sludge hauling 	
15.	Operational control of an oxidation ditch process should be bas on (choose the <u>best</u> answer):	ed
	 a. DOB & settleometer b. centrifuge & MLSS c. F/M ratio coupled with a consideration of sludge age d. how the system responds to parameters tracked over a period of time by trend charts e. the phases of the moon 	bd

	Name
Answe	rs for Final Quiz
¶u]ti¦	ple Choice: Choose the best answer(s) and place an "X" in front of the corresponding letter.
1.	Which of the following is not a term commonly used to identify an oxidation ditch?
X	a. Pasveer Oxidation Ditch b. Loop Aeration c. Loop Lagoon d. Carrousel Process e. Orbital System
2.	The oxidation ditch process was developed in
X	a. England b. United States c. Holland d. Germany e. Denmark
3.	The oxidation ditch process is a modification of
X	a. the trickling filter b. extended aeration activated sludge c. RBC's d. ABF e. aerated lagoon
4.	The carrousel variation is most applicable to the flow range.
X	a. 0.5-1 mgd b. 0-5 mgd c. 5-20 mgd d. 20-50 mgd e. 50-100 mgd

5.	The oxidation ditch is designed to operate at mg/1 D.O.
<u></u>	a. 0.1-0.5 mg/l b. 1-1.5 mg/l c. 0-2 mg/l d. 1-3 mg/l e. 5-10 mg/l
6.	Horizontal velocity of activated sludge around the ditch should be
<u>X</u>	a. 0.5 ft/sec b. 1.0 ft/sec c. 2.0 ft/sec d. 5.0 ft/sec e. 10.0 ft/sec
7.	MLSS concentration in the aeration ditch should be
	a. 500-1000 mg/l b. 1000-1500 mg/l c. 2000-4000 mg/l d. 4000-6G90 mg/l e. 8000-10,009 mg/l
8.	F/M ratios for aeration ditch loading are in the range.
	a. 0.01-0.2 b. 0.1-0.25 c. 0.25-0.35 d. 0.3-0.5 e. 0.5-1.0
9.	Which two tests are used to evaluate sludge settleability?
X	 a. volatile solids b. MLSS c. settleometer d. centrifuge e. SVI
10.	Wasting sludge from the syste… will have a long term effect on (choose 3 answers):
X X X	 a. DOB b. MLSS c. sludge age d. BOD e. solids inventory

11.	Algae blooms, D.O. demand, disinfection interference, impact on pH and toxic conditions can all be a result of
X	 a. excess nitrogen b. excess organic carbon c. excess D.O. d. inadequate oxidation e. stratification
12.	The condition in which oxygen is relatively low is called
X	 a. anaerobic b. anoxic c. aerobic d. nitrification e. stabilization
13.	Which of the following conditions favor nitrification? (choose 3 answers)
X X X	a. D.O. 1-3 mg/l b. anoxic c. pH 6.5-8.0 d. MLSS 4000-6000 mg/l e. low ammonia concentrations
14.	Daily operational activities should include (choose 4 answers):
X -X -X	 a. housekeeping b. safety consciousness c. equipment inspection d. laboratory testing e. sludge hauling
15.	Operational control of an oxidation ditch process should be based on (choose the <u>best</u> answer):
<u></u>	 a. DOB & settleometer b. centrifuge & MLSS c. F/M ratio coupled with a consideration of sludge age d. how the system responds to parameters tracked over a period of time by trend charts e. the phases of the moon